A Deep Comparative Study between Different Neural Networks Classifiers
نویسندگان
چکیده
In Machine learning and artificial intelligence have seemingly never been as typical and relevant to real-time applications as they are in these days autonomous, big data era. The fortune of machine learning and artificial intelligence depends on the coexistence of three important conditions: powerful computing environments, rich and/or large data, and efficient learning techniques (algorithms). The Extreme Learning Machine (ELM) as an emerging learning method provides efficient unified solutions to generalized feed-forward networks including but not limited to (both singleand multi-hidden-layer) neural networks, radial basis function (RBF) networks, and kernel learning. The widely used supervised neural network is the Support Vector Machine (SVM). It is known as being very accurate but at the expenditure of high computational complexity, particularly in the learning phase, making it less appropriate for hardware-oriented applications. A deep belief network (DBN) is an originative graphical model, or alternatively a type of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer. In this paper a new comparative study is proposed on different neural networks classifiers. The technique is implemented for accuracy of different algorithms.
منابع مشابه
Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملThe Diagnosis of Brucellosis in Rafsanjan City Using Deep Auto-Encoder Neural Networks
Introduction: Brucellosis is considered as one of the most important common infectious diseases between humans and animals. Considering the endemic nature of brucellosis and the existence of numerous reports of human and animal cases of brucellosis in Iran, the incidence of human brucellosis in Rafsanjan city was determined in the last 3 years (2016–2018). The main objective of this study was t...
متن کاملA Comparative Evaluation of Neural Classification Techniques for Identifying Multiple Fault Conditions
The objective of this research is to compare different neural network based classifiers for the accurate and reliable assessment of the status of specific fault conditions in a system with multiple fault conditions present. The proposed strategy utilizes features extracted from vibrational data and employs selforganising maps (SOMs), radial basis function (RBF) and multi-layer perceptron (MLP) ...
متن کاملCollaborative Layer-Wise Discriminative Learning in Deep Neural Networks
Intermediate features at different layers of a deep neural network are known to be discriminative for visual patterns of different complexities. However, most existing works ignore such cross-layer heterogeneities when classifying samples of different complexities. For example, if a training sample has already been correctly classified at a specific layer with high confidence, we argue that it ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016